In the news...

August 16th, 2018 / The Scientist

If climate change is the new normal, farmers in some regions of the world will have to get used to fighting mold and mildew. For wheat growers in particular, fungal blights are already a big problem—and only expected to worsen as weather patterns change. Fungal pathogens are advancing northwards at about 7 kilometers per year on average, worldwide.

Scientists around the world have been trying to make wheat, the most common crop on the planet, able to survive fungal diseases by introducing disease-resistant genes, but in the past, it has been difficult to add more than two or three of these genes at a time.

Enter the USDA’s Agricultural Research Service (ARS). On June 14, the ARS published a pilot study on an innovative technology called GAANTRY (Gene Assembly in Agrobacterium by Nucleic acid Transfer using Recombinase technologY) that can insert a “stack” of multiple genes simultaneously into plants.

Roger Thilmony, a research molecular biologist at the ARS, says his team inserted 10 genes into Arabidopsis plants—and that’s not the upper limit; theoretically, it could be far more. The genes were transgenic, making the Arabidopsis seedlings glow fluorescent colors so the researchers would know at a glance if the genes had been successfully inserted. However, genes from the same or related species that have some benefit, such as disease resistance, can also be swapped in. This will be important if GAANTRY is used to improve crop plants, which Thilmony says is the ultimate goal of his work.

Why gene-stacking? Multiple genes for disease resistance give plant immune systems a wider array of self-defense tools. That means wheat, potatoes, and other crops can be genetically engineered to tolerate heat, drought, diseases, and pests, the agricultural “four horsemen” of climate change. Read more